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Abstract
We present the Hugoniots of Al, Ta, Mo and W in their solid as well as
liquid phases. The liquid phase calculations are carried out on the basis
of the corrected rigid spheres (CRIS) model. The 0 K isotherm of the
solid phases, which are the necessary inputs for our computations, have been
obtained by full potential first principles electronic structure calculations with
generalized gradient approximation (GGA) for the exchange–correlationterms.
The melting curve as a function of pressure was obtained according to the
recently published model based on dislocation mediated melting, and also
compared with that using Lindemann criterion. Though the adiabatic pressure–
volume curve is affected little by melting, the pressure–temperature curve shows
substantial change.

1. Introduction

The equation of state (EOS) (i.e., the relation between P , V , T ) of a substance is very important
in basic and applied sciences. It provides a test for theoretical models of cohesion, which can
a priori predict the onset of phase transitions. An accurate EOS is necessary for interpreting
static as well as dynamic high pressure experiments, for pressure calibration to convert the
measured pressure variation of physical quantities to volume variations and vice versa, etc.
The EOS is also used as vital input for hydrodynamical calculations in controlled fission–
fusion research. Hence considerable efforts have been made, both experimentally for data
collection, and theoretically for predictive capabilities, in EOS studies (Ross and Young 1993,
Godwal 1995). Regarding the predictive part, proper account of thermal excitations of atoms
and electrons has to be taken, except for the 0 K isotherm, in the theoretical models used for
the predictions. As is well known, though high accuracy can be achieved in predicting the
0 K EOS by density functional theory (DFT) (Hohenberg and Kohn 1964) based calculations,
which can also account for core delocalization effects under compression by considering the
relevant states in the valence electron panel, estimating the temperature effects on the EOS is
still a daunting task. Recently some refined works have been carried out for Cu (Narasimhan
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and Gironcoli 2002) and Ta (Cohen and Gülseren 2001) using ab initio methods. Earlier Wang
et al (2000) constructed a mean field potential in terms of 0 K total energies obtained by ab
initio electronic structure calculations, and reported shock Hugoniots of Al, Cu, Ta, Mo and
W up to 1 TPa. However, in their studies of the adiabatic EOS, the shock melting effect has
been neglected. As is well known, irreversible shock heating leads to temperatures which
could be much higher than the melting temperature of the material, and thus it is necessary to
estimate the resulting effect of induced disorder on the shock Hugoniots. Currently very little
work on liquid Hugoniots exists, and thus the influence of melting on them is not very well
understood. Note that incorporating the thermal effects in the EOS simulations, on the same
footing as in the 0 K EOS, is prohibitively cumbersome in most of the cases. Besides, unlike in
a solid crystal in which the lattice periodicity can be exploited to a considerable extent, the first
principles calculations for liquids are much more troublesome. Hence, we have carried out the
Hugoniot calculations in the liquid phase of Al, Mo, Ta, and W based on the corrected rigid
spheres (CRIS) model (Kerley 1980a) to estimate the melting effects on them. Our Hugoniot
studies on Cu have been reported elsewhere (Shukla et al 2003).

The approach of the CRIS model to the study of thermodynamic properties of liquids and
dense gases is by the perturbation method. The thermodynamic properties are calculated from
an expansion about a hard sphere fluid reference system, in which the hard sphere diameter
is chosen by a variational principle. The model also incorporates corrections to first order
perturbation theory. The energy of a fluid molecule is defined to depend upon the local
configuration of its neighbours, and all terms in the expansion are given by the averages of
this quantity. The corrections to first order theory are approximated by using the concepts of
macroscopic fluctuation theory. The theory is developed in terms of a general set of variables
and the corresponding distribution functions, which describe the short range structure of fluids.
Three main assumptions have been made. The first assumption is that in any configuration of the
liquid, each molecule sits at the centre of the spherical shell formed by its nearest neighbours.
Let R be the radius of the shell and ν be the coordination number. It is clear that the shell
radius R and coordination numberν will vary from molecule to molecule throughout the liquid.
The probability of a particular shell size is related to the pair distribution function of the hard
spheres system. The second assumption is that the coordination number ν varies along with the
radius R in such a way that the volume per molecule is constant and equal to the macroscopic
value. The average coordination number will be proportional to the ratio of shell volume
and macroscopic volume per molecule. The third assumption is that the potential energy of a
molecule in the fields of its neighbours depends only on the nearest neighbour distance and the
coordination number. The potential is taken to be central, pair-wise additive, and extending
to only nearest neighbours. Using these assumptions the energy of a liquid molecule can
be calculated from the zero-temperature isotherm of the solid at the same nearest neighbour
distance by taking properly the correction due to change in the coordination number. The
reader is referred to Kerley (1980a, 1980b) for a detailed mathematical treatment of the model.

It may be noted that shock Hugoniot simulations are much more lengthy as compared to
those of isotherms, as various temperatures will have to be tried iteratively in getting the solu-
tions to the Rankine–Hugoniot equation. Thus the first principles calculations of melting effects
on Hugoniots are currently not easy, but some useful estimates can be obtained by adopting
simple models like the one employed in the present work, the details of which are given below.

2. Details of calculations

The details of the methods used to estimate the thermal effects in the isotherm and Hugoniot
are well-documented in the literature for solids and liquids (Godwal et al 1983, Godwal and
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Jeanloz 1989, Kerley 1980a), and we summarize below only the key aspects of the formulation.
Briefly, we have evaluated the internal energy at various volumes as a sum of three terms,

E = Ec + Elt + Eee, (1)

where Ec represents the 0 K total energy, Elt the vibrational energy of the ions, and Eee the
energy due to thermal excitation of electrons. We have used the full potential (FP) linear
augmented plane wave (LAPW) method (Blaha et al 1990, 2001) with generalized gradient
approximation (GGA) (Perdew et al 1996) for the exchange–correlation energy to calculate
Ec. The FP-LAPW calculations were carried out with constant muffin-tin radii (1.8 au for Al,
2.0 au for Ta, 2.0 au for Mo and 2.0 au for W) with RKmax = 9. Ec per atom was evaluated
with a tolerance of 10−5 Ryd with 5000 k-points for Brillouin zone summation.

Elt and Eee were evaluated by using the relations shown below (Godwal et al1983, Godwal
and Jeanloz 1989):

Eee = 0.5βT 2 (2)

Elt = 3kBTD(θD/T ), (3)

where β represents the electronic specific heat, D(θD/T ) is the Debye function, and θD is the
Debye temperature. We have also accounted for Eee by ab initio electronic band structure
calculations at non-zero temperatures, which enable us to compute [Ec + Eee], in place of
Ec of the 0 K calculations (see Godwal et al 2003 for details; Mermin 1965). However, as
these ab initio computations are quite exhaustive within the iterative scheme for the Hugoniot
estimate, they are mainly used to verify that the model formulations employed here for Eee

are adequate, so that the bulk of the necessary estimates are carried out with this model.
The lattice vibrational energy was estimated by the Debye–Mie Grüneisen model, which is
based on the assumption that the vibrational energy levels of ions are the same as those of
harmonic oscillators (Zel’dovich and Raizer 1976). The electronic thermal excitation energy
was estimated by the free electron formula using the density of states at the Fermi level obtained
by our FP-LAPW calculations. The corresponding equation for pressure is given by Hixson
and Fritz (1992), Godwal et al (1983)

P = −�Ec/�V + γlt Elt/V + γe Eee/V , (4)

where

Pee = γe Eee/V (5)

Plt = γlt Elt/V , (6)

γe and γlt being the electronic and lattice Grüneisen parameters. γlt(P) under pressure (P) at
density (ρ) was obtained by

γlt(P) = γlt(0)ρ0/ρ + 2/3(1 − ρ0/ρ). (7)

The solid and liquid Hugoniots (a Hugoniot is the locus of all possible states that can be
reached by using a single shock from a given initial state) are obtained by using the following
equation:

E − E0 = (P + P0)(V0 − V )/2, (8)

where E , P , V refer to the shocked material, and E0, P0, V0 refer to the unshocked material.
Clearly, the liquid Hugoniot below the melting point does not have any physical interpretation,
especially as some of the assumptions made in the CRIS model may not hold valid in that
region. Similarly the solid Hugoniot above the melting point should also not correspond to
any physical state of the system, though it can be used, by comparing with the liquid state
Hugoniot, to estimate the energy used in creating various disorder effects in the liquid state.

The melting curves under pressure were obtained by two methods.
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Table 1. Estimated equilibrium properties from the first principles electronic structure calculations.
The quantities in parentheses are from the experimental data.

Calculated equilibrium volume as a
fraction of ambient pressure Bulk modulus Calculated density

Element experimental volume (Vexp) i.e., V/Vexp (GPa) (g cm−3)

Al 0.9999 81 (76) 2.7003 (2.700)
Ta 1.011 204 (200) 16.4688 (16.65)
Mo 1.028 236.8 (230) 9.9416 (10.22)
W 1.029 327 (310) 18.7075 (19.25)

2.1. Lindemann law

The Lindemann rule is based on the hypothesis that all elements melt when the amplitude
of atomic vibration is a fixed fraction, ∼=1/8, of the nearest interatomic distance (Lindemann
1910). The melting temperature Tm(P) at pressure P is given by

Tm(P) = Tm(0)(V/V0)
2/3 exp[2γlt(1 − V/V0)], (9)

where Tm(0) is the ambient pressure melting temperature.

2.2. Dislocation-mediated melting

This effective theory of melting (Burakovsky et al 2000) treats dislocations as perfectly
screened and non-interacting, which is quite an adequate approximation when the dislocation
density is very high. A dislocation in the dense ensemble of other dislocations is assumed
to be a random loop, i.e., the possible configurations of a dislocation loop are closed random
walks, and short-range steric interactions are neglected. With further techniques of statistical
mechanics, the solid to liquid transition is modelled as a transition from a translationally
symmetric to a disordered system, and the order–disorder transition temperature, at which the
dislocations are copiously produced, is taken as the melting temperature. As per this model,
the melting temperature at pressure P is given by

Tm(P) = Tm(0)(1 + P B ′/B)−(1/B ′)[1 + PG ′/G(1 + P B ′/B)−(1/3B ′)], (10)

where B , G are ambient condition bulk and shear moduli, respectively, and the B ′, G ′ are
the first pressure derivatives of the respective quantities at ambient pressure. Comprehensive
comparison with experimental data on over half of the elements in the periodic table shows
that the melting relation obtained by the model is accurate to 17% (Burakovsky et al 2000).

3. Results and discussion

Table 1 summarizes the ambient condition estimates of some of the physical properties obtained
by our first principles calculations, which show good agreement with the experimental data
(Pearson 1967, www.webelements.com). Briefly, the equilibrium lattice constant for Al,
evaluated by estimating the minimum of the total energy versus volume curve, obtained by the
first principles calculations, shows excellent agreement with the experimental data. However,
our calculations overestimate the equilibrium volumes (and hence underestimate the densities)
of Ta by 1% and of Mo and W by about 3%. These marginal expansions of the theoretically
predicted equilibrium volumes are consistent with the fact that GGA often underestimates
the cohesive energy, and thus overestimates the lattice constants (Narasimhan and Gironcoli
2002). Moreover, all the equilibrium volumes (densities) listed in table 1 are within the
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accepted tolerance of about 6%,generally occurring in many first principles electronic structure
calculations. Also the bulk moduli, obtained by finding the derivatives of the pressure versus
volume curves, show good agreements with the experimental data. Our estimate of 81 GPa
for the bulk modulus of Al shows about 6% deviation from the experimental value of 76 GPa.
For Ta, our calculations (204 GPa) agree within 2% of the experimental value of 200 GPa. In
Mo, our estimated bulk modulus (236.8 GPa) is within about 3% of the experimental value
(230 GPa), whereas in W it (327 GPa) differs from the available data (310 GPa) by about 5%.
Thus the agreements between our calculated values of bulk moduli and the experimental data
are quite satisfactory, especially as the errors get compounded in evaluating the derivatives.
In view of these good agreements displayed in table 1, other quantities predicted by using
the results of the present calculations should be reliable. It might be possible to obtain better
equilibrium properties by judicious choice of the exchange–correlation terms, as has been
found in some metals and intermetallics (Godwal et al 2002); but the experimental errors in
the data currently available for comparison with the Hugoniot calculations are larger than the
refinements obtained by such an exercise.

Figure 1(a) shows the 300 K isotherm of Al and figure 1(b) shows its solid and liquid phase
Hugoniots. Both the curves show very good agreement with the experimental data (Nellis et al
1988, Mitchell et al 1981, 1991). We have also tested the effect of second order correction
to the first order perturbation terms in the CRIS model and found that the change due to this
correction is less than 8%. This result is in agreement with the observations made by Kerley
(1980b) in the original study of this model that the second order correction has little effect.
The shock melting based on the dislocation mediated model takes place at about 130 GPa
pressure, as per our estimate, above which the liquid Hugoniot is relevant rather than the solid
one. Though the adiabatic P–V curve is affected little by melting and is within the tolerance
of agreement with available experimental data, the P–T curve shows substantial change due
to melting. Thus it is important to consider the effects of melting in these shock Hugoniot
related studies. It may be noted that similar mismatch of solid and liquid P–T Hugoniots as
compared to the thermal P–V curve have been obtained from more elaborate first principles
based calculations for iron (Alfe et al 2002). They used the thermodynamic integration to
evaluate the change in free energy in going from a simple reference system to the ab initio
system. They used the inverse power potential for the reference system, and obtained the
required thermal averages by ab initio molecular dynamics. Experimental data from shock
temperature measurements (for example, by the pyrometric method (Yoo et al 1993)) are
desired to resolve the disagreement.

It may be noteworthy that though the models used in the current work to estimate the
thermal effects are simple and do not demand heavy computations, the agreement with the
experimental data is remarkable, especially in view of the large errors involved in the shock
measurement data.

Figures 2–4 show the results for Ta, Mo and W. The P–V curves (both isothermal and
Hugoniot) show very good agreement with experimental data (Cynn and Yoo 1999, Mitchell
et al 1981, 1991, Hixson and Fritz 1992) and also show little effect of melting. Among the
melting curves, the Lindemann rule gives much slower rise with pressure as compared to that
of dislocation mediated melting in all the cases studied. It is worth comparing these results
with experimental melting curves or those obtained by first principles simulations. Neither
data are currently available on these metals. It may be noted that neither of the two employed
models on melting accounts for the high pressure structural transition of the assumed solid
phase (the ambient phase physical quantities like bulk modulus, its pressure derivatives, etc,
are used), and thus a priori knowledge of any structural transition under pressure is needed to
rectify the predicted curves. It is well known that anomalies in the melting curve exist due to
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Figure 1. (a) 300 K isotherm with experimental data (filled diamonds) from Nellis et al (1988) for
Al. (b) Theoretical solid and liquid Hugoniots with experimental data (open and filled diamonds)
from (Mitchell et al 1991, 1981) for Al. (c) P–T Hugoniot for Al, and the melting curves under
pressure based on the Lindemann rule and dislocation model. Triangles (Lindemann rule) and
circles (dislocation model) are used to contrast the melting curves from the Hugoniots (and unlike
in parts (a) and (b), these symbols do not represent any experimental data).

structural transition in the solid phase under compression (Errandonea et al 2002), which calls
for improved formulations based on these models.
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Figure 2. (a) 293 K isotherm with experimental data (filled squares) from Cynn and Yoo (1999) for
Ta. (b) Theoretical solid and liquid Hugoniots with experimental data (diamonds) from Mitchell
et al (1981) for Ta. (c) P–T Hugoniot and melting curves for Ta. Notations are like those of
figure 1(c).

We have used the results of the first principles electronic structure calculations to obtain the
EOS, including thermal effects based on simple models. The same method can be employed
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Figure 3. (a) 293 K isotherm with experimental data (filled diamonds) from Hixson and Fritz
(1992) for Mo. (b) Theoretical solid and liquid Hugoniots with experimental data from Mitchell
et al (1981) (filled squares) and Hixson and Fritz (1992) (open squares) for Mo. (c) P–T Hugoniot
and melting curves for Mo. Notations are like those of figure 1(c).

in the difficult intermediate pressure region (1–10 TPa) (Godwal et al 1983). The estimated
shock Hugoniots for Al, Ta, Mo, and W are compared with the data available in the literature.
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Figure 4. (a) 293 K isotherm with experimental data (filled squares) from Hixson and Fritz (1992)
for W. (b) Theoretical solid and liquid Hugoniots with experimental data (filled diamonds) from
Hixson and Fritz (1992) for W. (c) P–T Hugoniot and melting curves for W. Notations are like
those of figure 1(c).

The agreement with the experimental data, depicted in figures 1–4, of our simulations using
simplified models to evaluate the ionic and electronic thermal excitation effects, within the
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currently achievable experimental accuracies, emphasizes the usefulness of the procedure.
Our method is especially useful for predictions at the multimegabar pressure range—which
may not yet be easily achievable, and also off the shock Hugoniots. Note that, in principle,
non-zero temperature band structure calculations, discussed earlier (Mermin 1965, Godwal
et al 2003), and first principles evaluation of ionic thermal effects by Car and Parrinello (1985)
or by using embedded atom type potentials (Ercolessi and Adams 1994) in a high temperature
molecular dynamics simulations can be employed to obtain the shock Hugoniots. But note
that in solving the Rankine–Hugoniot condition (equation (8)) at a fixed volume V , one has to
try a range of temperatures and evaluate the energy E on the left-hand side of equation (8), and
pressure P on the right-hand side for each temperature, and look for satisfying the equation by
iteration. Generally it takes very many iterations, which increase with compression, to reach
a reasonable tolerance of satisfying equation (8). Note that a further iteration on the packing
fraction is needed for a fixed volume in a liquid, and for each packing fraction the temperature
trails are needed. Moreover, the temperatures involved can be of the order of 105 K or so
at high compression (see figure 2(c)). Thus repeated first principles calculations to get the
Hugoniot iteratively are extremely tedious even with the most powerful computers available
to date. Note that in the Car–Parrinello-type simulations of shock Hugoniots, the thermal
excitations of electronic states would necessitate a prohibitively large number of electronic
states to be included in the calculations, as the thermal energy (kT ) involved at the temperatures
of Hugoniot calculations are comparable to the Fermi energy.

Our method of calculation can take into account the core-delocalization effects under static
pressure, as the core states begin to overlap, and possibly move above the Fermi level. But
the ionization effects due to shock impacts cannot be easily incorporated in this framework,
though those due to electronic thermal excitations can be included via finite temperature band
structure calculations; but they will have to be evaluated at many temperatures repeatedly
while looking for Rankine–Hugoniot equations iteratively. These and other factors, like
the temperature dependence of exchange–correlation terms, can be considered when the
experimental accuracies improve and provide a more stringent testing ground to the theoretical
models, especially those which can simulate the interesting anomalies in the EOS due to
ionization effects.

Thus it is worth noting that it is not essential to go through elaborate first principles
calculations for thermal effects to obtain reliable Hugoniots, especially when the relevant
experimental accuracies are limited, and when the required data on essential physical
parameters like the Grüneisen parameter, Debye temperature, etc, are available or estimated
using the results of ab initio calculations. No doubt a complete first principles procedure will
have the merit of possessing independent predictive powers, especially for novel materials; but
with their colossal computational demands to predict Hugoniots, they may be used only when
the data required for simplified model studies are unavailable.
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